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The presence of  double Tg and phase separ- 
ation in TesoSi2o_=Pb x glasses 

The occurrence of phase separation is of importance 
for preparation of materials with definite proper- 
ties by controlled crystallization of glass [1-3]. In 
chalcogenides the phenomenon of phase separ- 
ation has not been widely studied. Recently, the 
phase separation manifesting itself by double Tg 
has been found for P b - G e - A s - S e  glasses by 
calorimetric measurements and was confirmed by 
microscopic studies [4, 5]. The coexistence of 
two glassy phases has been also detected for 
WeaoGex2.sPbT.s [6] and Te77A123 [7] glasses. The 
possibility of phase separation in Tea0Si2o-xPbx 
glasses has been shown by Lasocka [8]. The aim 
of this work was to confirm this prediction. 

For preparation of alloys, high-purity elemental 
solids were used (5 N, 6 N). Weighed samples (20 g) 
were melted by induction for 3 rain at about 
1073 K, in evacuated quartz ampoules. A high- 
frequency generator was used. Small amounts of 
alloys thus prepared were remelted and then 
rapidly cooled by the gun technique [9] to pro- 
duce a glass. Glassy samples of 10 mg were studied 
calorimetrically using a Perk_in-Elmer DSC-2 unit. 
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Figure 1 DSC traces taken for T%0Si~7.sPb2. s glass, as an 
example of double Tg occurrence: (a) first run, (b) second 
run, after previous heating to completion of the first exo- 
thermic transformation. 
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F igure  2 Tg o f  ternary glasses as a func t ion  o f  Pb concen- 

trat ion. 

All glasses had the same thermal history. DSC 
curves taken for the first run exhibited only one 
glass transition temperature, Tg, (Fig. 1 a). In order 
to read the second glass transition temperature, 
Tg2, the procedure proposed in [6] was used. 
Namely, samples were heated in a calorimeter at a 
rate of 20 ~ min -1 to the temperature of the end of 
the first exothermic transformation, cooled at a 
rate of 320 ~ rain -1 and re-heated at a rate of 20 ~ 
min -1. Tg~ appeared within the temperature range 
of the previous peak of the first exothermic trans- 
formation. 

We used a series of TeaoSi2o_=Pb = glasses (at%) 
with values of x changing every 2.5%. For each 
composition of glass, five replicate samples were 
studied and the mean values of Tg, and Tg~ were 
calculated. The reproducibility of the results was 
better than 1~ Full experimental data are recorded 
in Table I and plotted in Figs. 1,2 and 4. 

Double Tg occurred for glasses containing 2.5 
to 10 at% Pb. Depending on the composition, Tg 1 
and Tg~ were present within the temperature ranges 
330 to 430 K and 469 to 520 K, respectively (Fig. 
2). Glasses with lead concentration higher than 
10 at% exhibited no double Tg. 

The occurrence to two glass transition tempera- 
tures, Tg~ and Tg~, points to the co-existence of 
two glassy phases in the as-quenched sample. The 
question arises which Tg corresponds to which 
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Figure 3 Compositions studied, shown in the concen- 
tration triangle of system Te-Si-Pb. Binary Te-Si, 
Te-Pb and Si-Pb diagrams were taken from ref~ [10], 
[ 11 ], and [ 12], respectively. 
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Figure4 Tg as a function of molar ratio SizT%:PbTe. 

phase. At equilibrium, the studied system T e - S i -  
Pb can be considered to be composed of  Te, 
Si2T% and PbTe species (Fig. 3). In the glassy 
state, the existence of  two super-saturated solid 
solutions PbTe(Te) and Si2Te3(Te) may be 
assumed. Calorimetric results indicate that Tg 1 
corresponds to the first exotherm, and Tg~ to the 
second one. X-ray studies performed for two dif- 
ferent samples heated to just above the first and 
second exotherms, respectively, indicate the occur- 
rence of  Te plus PbTe crystals in the first, and 
Si2Te3 in the second sample. The co-existence of  
two glassy phases, PbTe-rich and Si2Te3-rich, also 

seems to be confirmed by the nature of  the 
changes in Tg plotted as a function o f  the molar 
concentration ratio NSi,T%:NpbT~ (Fig. 4). The 
slope o f  the l inewithin the range o f  low values o f  
this ratio (high Pb concentrations) points to a 
strong dependence of  Tg I on the Pb concentration. 
In the case of  lower Pb concentrations (2.5 to 7.5 
at%), even a great change in the ratio fails to 
affect Tg, to any great extent. The occurrence of  
Tg z within the range of  high concentrations of  
SizTe3 seems to be due to the existence of  a 
Si2T%-rich glass. 

TABLE I Glass transition temperatures, Tg~, Tg~, and molar fractions of Te, Si2T%, PbTe in TesoSi2o_xPbx glasses 

x (at%) 

0 2.5 5 7.5 10 12.5 15 17.5 20 

Molar fraction 
NTe 0.5000 0.5125 0.5250 0.5375 0.5500 0.5625 0.5750 0.5875 0.6000 
NSI2Te3 0.5000 0.4375 0.3750 0.3125 0.2500 0.1875 0.1250 0.0625 0 
NPbTe 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

NsizTe3: - 8.75 3.75 2.08 1.25 0.75 0.42 0.18 0 
NpbTe 

Glass transition temperature (K) 
Tg 1 430 421 408 396 386 377 361 349 330 
Tg z - 520 508 487 469 . . . .  
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Preparation of copper~oated titania 
particles for composites 

In recent years, various methods for production of  
metal ceramic particulate composites have been 
developed based on powder and liquid metallurgy 
techniques [ 1 - 5 ] .  Frequently, non-wettability 
between oxide particles and metals results in 
segregation of  metal and ceramic phases and poor 
interfacial bonding in metal-ceramic particulate 
composites [ 6 - 7 ] .  To improve the wettability, 
the ceramic particles are frequently coated with 
metals. Various coating techniques have been 
developed [8] of  which electroless deposition is 
the method most  commonly used [9] .  Deonath 
and Rohatgi [10] have used this procedure to coat 
copper on mica particles. The major steps involved 
in the electroless method are: (a) activation of  the 
surface of  the ceramic particles by deposition of  a 
noble metal such as Pd, Pt and Ag; (b) deposition 
of metal on the activated surface from a reducing 
bath containing metal ions. 

Owing to the large surface area of  ceramic par- 
ticles, uniform activation throughout the surfaces 
can be achieved only with a large amount of  
activator. As a result, the process frequently 
becomes uneconomical with conventional acti- 
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vators. In this communication, we report a new 
method for coating titania (TiO2) particles with 
copper (thickness range 2 to 15/ira) employing a 
relatively inexpensive activator - copper tartrate 
(CUT). Experiments were also carried out to coat 
copper onto TiO2 particles using conventional 
activator SnC12/PdC12 solution [6].  The results 
obtained from both techniques are compared. 

TiO2 powder o f  particle size 1 to 20/ lm was 
supplied by M/s Travancore Titanium Products 
Ltd, Trivandrum. Copper tartrate (CUT) solution 
was prepared by mixing sodium potassium tartrate 
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Figure I Copper tartrate adsorption on TiO 2 particles as a 
function of time. 
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